Graph Transformation in Constant Time
نویسندگان
چکیده
We present conditions under which graph transformation rules can be applied in time independent of the size of the input graph: graphs must contain a unique root label, nodes in the left-hand sides of rules must be reachable from the root, and nodes must have a bounded outdegree. We establish a constant upper bound for the time needed to construct all graphs resulting from an application of a fixed rule to an input graph. We also give an improved upper bound under the stronger condition that all edges outgoing from a node must have distinct labels. Then this result is applied to identify a class of graph reduction systems that define graph languages with a linear membership test. In a case study we prove that the (non-context-free) language of balanced binary trees with backpointers belongs to this class.
منابع مشابه
A Time Dependent Pollution Routing Problem in Multi-graph
This paper considers a time dependent(the travel time is not constant throughout the day) pollution routing problem (TDPRP), which aids the decision makers in minimizing travel time, toll cost and emitted pollution cost. In complexity of urban areas most of the time one point is accessible from another with more than one edge. In contrast to previous TDPRP models, which are designed with only ...
متن کاملA Hybrid Meta-heuristic Approach to Cope with State Space Explosion in Model Checking Technique for Deadlock Freeness
Model checking is an automatic technique for software verification through which all reachable states are generated from an initial state to finding errors and desirable patterns. In the model checking approach, the behavior and structure of system should be modeled. Graph transformation system is a graphical formal modeling language to specify and model the system. However, modeling of large s...
متن کاملFrom the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups
The Lorentz transformation of order $(m=1,n)$, $ninNb$, is the well-known Lorentz transformation of special relativity theory. It is a transformation of time-space coordinates of the pseudo-Euclidean space $Rb^{m=1,n}$ of one time dimension and $n$ space dimensions ($n=3$ in physical applications). A Lorentz transformation without rotations is called a {it boost}. Commonly, the ...
متن کاملENTROPY OF DYNAMICAL SYSTEMS ON WEIGHTS OF A GRAPH
Let $G$ be a finite simple graph whose vertices and edges are weighted by two functions. In this paper we shall define and calculate entropy of a dynamical system on weights of the graph $G$, by using the weights of vertices and edges of $G$. We examine the conditions under which entropy of the dynamical system is zero, possitive or $+infty$. At the end it is shown that, for $rin [0,+infty]$, t...
متن کاملRooted Graph Programs
We present an approach for programming with graph transformation rules in which programs can be as efficient as programs in imperative languages. The basic idea is to equip rules and host graphs with distinguished nodes, so-called roots, and to match roots in rules with roots in host graphs. This enables graph transformation rules to be matched in constant time, provided that host graphs have a...
متن کاملتعبیه ی هندسی درخت درنقاط داخل یک چندضلعی با حداقل تعداد خم
In this paper we consider to embed a tree T with N vertices on a set of N points inside a simple polygon on n vertices and the goal is to minimize the number of bends. The main idea of our algorithm is modeling the problem into graph matching problem and uses the graph matching algorithms. We apply the concept of error-correction transformation and find the appropriate cost function then we per...
متن کامل